Stir zone stress corrosion cracking behavior of friction stir welded AA7075-T651 aluminum alloy joints

Author:

Parasuraman Prabhuraj1,Selvarajan Rajakumar2,Visvalingam Balasubramanian2,Ilamurugan Rajkumar3,Subramanian Kavitha4

Affiliation:

1. Department of Mechanical Engineering , Methodist College of Engineering and Technology , Abids , Hyderabad 500001 , Telangana , India

2. Department of Manufacturing Engineering, Centre for Materials Joining and Research (CEMAJOR) , Annamalai University , Annamalai Nagar 608002 , Tamilnadu , India

3. Department of Mechanical Engineering , C. Abdul Hakeem College of Engineering & Technology , Melvisharam 632 509 , Tamilnadu , India

4. Department of Electronics and Instrumentation Engineering , Annamalai University , Annamalai Nagar 608002 , Tamilnadu , India

Abstract

Abstract AA7075 high-strength aluminum alloy, which has many applications in the aircraft, marine and automobile industries, happens to be susceptible to stress corrosion cracking (SCC) when exposed to corrosive environments, resulting in reduced service life of the components. Inappropriate fabrication processes may augment this behavior. The fabrication of AA7075 components using conventional fusion welding processes may produce defects that include hot cracking and porosity. Friction stir welding (FSW) is a solid-state joining process that can avoid these problems and being widely used for components made of aluminum alloys. Because the joining occurs at a temperature that is lower than the melting point of the material, solidification cracking defects can be eliminated. This study investigates the SCC behavior of FSW AA7075-T651 joints. Horizontal-type SCC test was conducted on circumferential-notched tensile (CNT) specimens exposed to 3.5 wt. % NaCl solutions under various axial stress conditions. The different regions of the fractured specimens, such as the machined notch, SCC region and region of ultimate mechanical failure were analyzed by scanning electron microscopy (SEM) to establish the mechanism of SCC. The threshold stress of parent metal (PM) and stir zone (SZ) of the FSW joint were found to be 242 and 175 MPa, respectively.

Funder

Department of Science and Technology (DST), SERB Division, Government of India

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimum power for ER-70S-2 and SS400 dissimilar CDW joint;Journal of Applied Engineering Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3