Affiliation:
1. College of Mechanical Engineering , Zhejiang University of Technology , Hangzhou 310023 , China
2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology , Hangzhou 310023 , China
Abstract
Abstract
A laser shock peening (LSP) layer, a micro-arc oxidation (MAO) coating, and an LSP/MAO composite coating were fabricated on the surface of AZ80 magnesium alloy by laser shock and micro-arc oxidation process. The ball-disc grinding method was used to perform wear test on the three treated specimens in simulated body fluids (SBF) with pH values of 4, 7.4 and 9. The morphology and element content of worn surface were investigated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results indicated that the wear rates of the three treated specimens in three pH environment in numerical order were pH 4 > pH 7.4 > pH 9, respectively. The wear rates of the three treated specimens in the same pH environment were arranged in the order of MAO > LSP > LSP/MAO, respectively. The main wear mechanisms of the LSP specimen in pH 4 environment were fatigue wear and corrosion wear, while it were corrosion wear and adhesive wear in pH 7.4 and pH 9 environments. Abrasive wear, fatigue wear and corrosion wear were the main wear mechanisms of the MAO specimen in pH 4 environment, while abrasive wear, adhesive wear and corrosion wear were the main wear mechanisms of that in pH 7.4 and pH 9 environments. The corrosion wear resistance of the LSP/MAO specimen in SBF solution with three pH values was improved due to the synergism of LSP fine crystal layer and MAO coating.
Subject
General Materials Science,General Chemical Engineering,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献