Corrosive-wear behavior of LSP/MAO treated magnesium alloys in physiological environment with three pH values

Author:

Shen Yongshui1,Sun Tongjin1,Zhu Tao1,Xiong Ying12

Affiliation:

1. College of Mechanical Engineering , Zhejiang University of Technology , Hangzhou 310023 , China

2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology , Hangzhou 310023 , China

Abstract

Abstract A laser shock peening (LSP) layer, a micro-arc oxidation (MAO) coating, and an LSP/MAO composite coating were fabricated on the surface of AZ80 magnesium alloy by laser shock and micro-arc oxidation process. The ball-disc grinding method was used to perform wear test on the three treated specimens in simulated body fluids (SBF) with pH values of 4, 7.4 and 9. The morphology and element content of worn surface were investigated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results indicated that the wear rates of the three treated specimens in three pH environment in numerical order were pH 4 > pH 7.4 > pH 9, respectively. The wear rates of the three treated specimens in the same pH environment were arranged in the order of MAO > LSP > LSP/MAO, respectively. The main wear mechanisms of the LSP specimen in pH 4 environment were fatigue wear and corrosion wear, while it were corrosion wear and adhesive wear in pH 7.4 and pH 9 environments. Abrasive wear, fatigue wear and corrosion wear were the main wear mechanisms of the MAO specimen in pH 4 environment, while abrasive wear, adhesive wear and corrosion wear were the main wear mechanisms of that in pH 7.4 and pH 9 environments. The corrosion wear resistance of the LSP/MAO specimen in SBF solution with three pH values was improved due to the synergism of LSP fine crystal layer and MAO coating.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3