The use of artificial neural networks for modelling pitting corrosion behaviour of EN 1.4404 stainless steel in marine environment: data analysis and new developments
Author:
Affiliation:
1. Algeciras Polytechnic School of Engineering , University of Cadiz , Avda. Ramón Puyol s/n. , 11202 Algeciras (Cádiz) , Spain
2. ACERINOX EUROPA S.A.U , Polígono Industrial Palmones , 11379 Los Barrios (Cádiz) , Spain
Abstract
Funder
Universidad de Cádiz
Publisher
Walter de Gruyter GmbH
Subject
General Materials Science,General Chemical Engineering,General Chemistry
Link
https://www.degruyter.com/document/doi/10.1515/corrrev-2019-0095/pdf
Reference49 articles.
1. Alfonsson, E. and Qvarfort, R. (1992). Duplex stainless steels of yesterday and of today – a pitting corrosion investigation. ACOM 3: 1–4.
2. Barton, T.F., Tuck, D.I., and Wells, D.B. (1993). The identification of pitting and crevice corrosion using a neural network. Proceedings 1993 the first New Zealand international two-stream conference on artificial neural networks and expert systems. IEEE, Dunedin, New Zealand, pp. 325–326. https://doi.org/10.1109/ANNES.1993.323012.
3. Birbilis, N., Cavanaugh, M.K., Sudholz, A.D., Zhu, S.M., Easton, M.A., and Gibson, M.A. (2011). A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys. Corros. Sci. 43: 168–176. https://doi.org/10.1016/j.corsci.2010.09.013.
4. Bishop, C.M. (1995). Neural networks for pattern recognition. Oxford: Clarendon Press, Oxford University Press.
5. Boucherit, M.N.N., Amzert, S.A., Arbaoui, F., Hanini, S., and Hammache, A. (2008). Pitting corrosion in presence of inhibitors and oxidants. Anti-Corrosion Methods Mater. 55: 115–122. https://doi.org/10.1108/00035590810870419.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning-Based Prediction of Intergranular Corrosion Resistance in Austenitic Stainless Steels Exposed to Various Heat Treatments;Journal of The Institution of Engineers (India): Series D;2024-03-17
2. A critical review of machine learning algorithms in maritime, offshore, and oil & gas corrosion research: A comprehensive analysis of ANN and RF models;Ocean Engineering;2024-03
3. Corrosion Behaviour Modelling Using Artificial Neural Networks: A Case Study in Biogas Environment;Metals;2023-10-27
4. Neural network based corrosion modeling of Stainless Steel 316L elbow using electric field mapping data;Scientific Reports;2023-08-11
5. CO2 Corrosion Rate Prediction for Submarine Multiphase Flow Pipelines Based on Multi-Layer Perceptron;Atmosphere;2022-11-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3