The use of artificial neural networks for modelling pitting corrosion behaviour of EN 1.4404 stainless steel in marine environment: data analysis and new developments

Author:

Jiménez-Come María Jesús1ORCID,Martín María de la Luz1,Matres Victoria2,Mena Baladés Jesus Daniel1

Affiliation:

1. Algeciras Polytechnic School of Engineering , University of Cadiz , Avda. Ramón Puyol s/n. , 11202 Algeciras (Cádiz) , Spain

2. ACERINOX EUROPA S.A.U , Polígono Industrial Palmones , 11379 Los Barrios (Cádiz) , Spain

Abstract

Abstract Stainless steel has proved to be an important material to be used in a wide range of applications. For this reason, ensuring the durability of this alloy is essential. In this work, pitting corrosion behaviour of EN 1.4404 stainless steel is evaluated in marine environment in order to develop a model capable of predicting its pitting corrosion status by an automatic way. Although electrochemical techniques and microscopic analysis have been shown to be very useful tools for corrosion studies, these techniques may present some limitationus. With the aim to solve these drawbacks, a three-step model based on Artificial Neural Networks (ANNs) is proposed. The results reveal that the model can be used to predict pitting corrosion status of this alloy with satisfactory sensitivity and specificity with no need to resort to electrochemical tests or microscopic analysis. Therefore, the proposed model becomes a useful tool to predict the behaviour of the material against pitting corrosion in saline environment automatically.

Funder

Universidad de Cádiz

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3