The third-generation biodiesel blends corrosion susceptibility of oxide particle-reinforced Si-rich aluminum alloy matrix composites

Author:

Hosseinabadi Navid12ORCID,Moheimani Navid R.34

Affiliation:

1. Department of Materials Engineering and Metallurgy , Faculty of Engineering, Shiraz Branch, Islamic Azad University , P.O. Box 74731-71987 , Shiraz , Iran

2. The abadeh school of higher education , Shiraz university , Shiraz , Iran

3. Algae R&D Centre, Environmental and Conservation Sciences, Murdoch University , Murdoch , WA 6150 , Australia

4. Centre for Water, Waste and Energy, Harry Butler Institute, Murdoch University , Murdoch , WA 6150 , Australia

Abstract

Abstract The study of a stir cast Al356-Nb2O5)P composite immersed in third-generation microalgal-derived biodiesel blends with enhanced plasma electrolyte oxidation surface modification revealed the corrosion susceptibility and possible by-product formation. The effect of (oxide)P reinforcement and mixed-oxide surface coatings were studied separately and cumulatively. Samples were immersed in different biodiesel and petrodiesel blends for up to 3000 h, and their corrosion and electrochemical behavior was studied. Although some weight change was recorded in all samples, the corrosion rates significantly decreased from 1.8 to 1.3 by 10 wt% Nb2O5)P reinforcement, which further decreased 10 times after surface modification. Electron microscopy revealed primary fine-grained microstructure with low porosity content of fine and needlelike dendritic structures in composites and irregular volcanic with scattered micropores and microcracks in surface-modified composites that changed to corrosion spots and flake-covered microcracks after immersion.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3