Corrosion behaviour OF HVOF deposited Zn–Ni–Cu and Zn–Ni–Cu–TiB2 coatings on mild steel

Author:

Ali Sheikh Idrees1ORCID,Ahmad Sheikh Nazir1

Affiliation:

1. Department of Mechanical Engineering , National Institute of Technology Srinagar , Srinagar , JK 190006 , India

Abstract

Abstract In this study, Zn–Ni–Cu and Zn–Ni–Cu–TiB2 coatings were deposited using high-velocity oxy-fuel (HVOF) thermal spray technique on a mild steel substrate. Corrosion tests like neutral salt spray (NSS) following (ASTM B-117) standard and immersion cycle test following ASTM G-31, ASTM G1-03, standards were carried out for Zn–Ni–Cu and Zn–Ni–Cu–TiB2 coated mild steel along with uncoated mild steel acting as a control. Both Zn–Ni–Cu and Zn–Ni–Cu–TiB2 coated mild steel were corrosion resistant as compared to uncoated mild steel. Raman analysis following the immersion cycle test inferred that uncoated mild steel had all forms of rust. While Zn–Ni–Cu and Zn–Ni–Cu–TiB2 coated mild steel developed very little rust. The characterization helped to understand the changes in the surface before and after tests. It was observed that both Zn–Ni–Cu and Zn–Ni–Cu–TiB2 coated mild steel had little corrosion degradation of surface as compared to uncoated mild steel. Suggesting that both coatings performed significantly better compared to uncoated mild steel in corrosive environments. Polarization and EIS tests of both coated and uncoated mild steel in a 3.5% NaCl medium helped to understand the behaviour of coatings over a range of frequencies. Both coated samples had high polarization potential E corr values and lower polarization current I corr values as compared to uncoated mild steel. Inferring better performance of coatings in corrosive environments as compared to uncoated mild steel.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3