Environment-induced fatigue cracking behavior of aluminum alloys and modification methods

Author:

Wang Xi-Shu1,Li Xu-Dong,Yang Hui-Hui1,Kawagoishi Norio2,Pan Pan1

Affiliation:

1. 1Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084, P. R. China

2. 3Formerly Department of Mechanical Engineering, Kagoshima University, 890-0065, Japan

Abstract

AbstractThis paper reviews the current corrosion fatigue strength issues of light metals, which include the corrosion fatigue cracking behaviors, such as the prior-corrosion pit deformation mechanism, the synergistic interaction between prior-corrosion pits and local stress/strain, the coupling damage behavior under mechanical fatigue loading, and the surrounding environmental factors such as a high humidity and a current 3.5 wt.% or 5.0 wt.% NaCl aqueous solution. The characterization of corrosion fatigue crack growth rate based on simple and measurable parameters (crack propagation length and applied stress amplitude or stress intensity factor) is also of great concern in engineering application. In addition, an empirical model to predict S-N curves of aluminum alloys at the environmental conditions was proposed in this paper. One of the main aims was to outline the corrosion fatigue cracking mechanism, which favors the corrosion fatigue residual life prediction of aluminum alloys subjected to the different environmental media that are often encountered in engineering services. Subsequently, this paper explores recently various surface modification technologies to enhance corrosion fatigue resistance and to improve fatigue strength. For example, the fatigue strength of 2024-T4 aluminum alloy has been modified using plasma electrolytic oxidation coating with the impregnation of epoxy resin modification method to compare with other oxide coating or uncoated substrate alloy.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Reference220 articles.

1. In - situ investigation on the pitting corrosion behaviour of friction stir welder joint of aluminum alloy;Kand;Corros Sci,2024

2. Markov patent;Markova,1976

3. Mechanism of fatigue Life improvement due to fine particle shot peening in high strength aluminum alloy Met in Japanese;Inoue;Inst,2010

4. Hydrogen embrittlement phenomena mechanisms;Lynch;Corros Rev,2012

5. Effect of potting corrosion on very high cycle fatigue behavior;Wang;Scripta Mater,2003

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3