Corrosion characteristics of in situ hybrid (Al3Ni + Al2O3)/Al composites synthesized by the solid-state combustion

Author:

Xue Jing1,Yu Xiaojie1,Yao Mingxiao1,Su Fei1,Yang Jin1,Gong Jianbao1,Huang Haijun2

Affiliation:

1. School of Materials Science and Engineering , 66323 Shanghai University of Engineering Science , Shanghai 201620 , China

2. School of Materials and Chemistry , 47863 University of Shanghai for Science and Technology , Shanghai 200093 , China

Abstract

Abstract In this study, in situ hybrid (Al3Ni + Al2O3)/Al composites were prepared successfully by the solid-state combustion via Al–NiO system. The effects of Al3Ni + Al2O3 on the corrosion features of composites were analyzed using potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion corrosion in 3.5 wt% NaCl solution. The results show that with the increase of NiO addition, the corrosion resistance of composites is improved, and the corrosion resistance of 15 % NiO–Al composite is almost comparable to the Al matrix. The increased quantity and dispersive distribution of Al3Ni and Al2O3 particles can effectively prevent the occurrence of corrosion and the movement of free electrons. Besides, more fine Al2O3 particles distributed in grain boundaries can increase the impedance and hinder the electrochemical corrosion preferentially starting at the boundary. Also, in the composite with high NiO addition, a better and compact interface bonding can be formed due to reduction of large size Al3Ni particles and improvement in the dispersion of particles, thereby inhibiting interface damage. This study has advanced understanding of corrosion.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3