Long-term state-driven atmospheric corrosion prediction of carbon steel in different corrosivity categories considering environmental effects

Author:

Ji Ziguang1,Ma Xiaobing1,Cai Yikun2ORCID,Yang Li3,Zhou Kun3

Affiliation:

1. School of Reliability and Systems Engineering , Beihang University , Beijing 100083 , China

2. School of Aeronautics and Astronautics , Sichuan University , Chengdu , China

3. Southwest Institute of Technology and Engineering , Chongqing , China

Abstract

Abstract This study investigates an environment-centered, state-driven corrosion prognosis framework to predict the long-term atmospheric corrosion loss of metal materials, and this paper takes carbon steel as an example to show the establishment process of the framework. Unlike traditional power-linear prediction models that seldomly consider environmental impacts, the proposed model quantitatively establishes the correlations between corrosion loss and dynamic atmospheric environmental factors. A comprehensive power-linear function model integrating multiple atmospheric environmental factors is constructed, following the corrosion kinetics robustness. Under the proposed framework, the steady-state start time is evaluated, followed by the long-term corrosion loss prediction under different corrosivity categories and test sites. The applicability is justified via a case study of long-term field exposure tests of metal materials in China, as well as the experimental results of the ISO CORRAG program. By comparing with the traditional power model and ISO model, the experimental results demonstrate the capability and effectiveness of the proposed prognosis methodology in acquiring accurate corrosion state information and corrosion loss prediction results with less input corrosion information.

Funder

National Natural Science Foundation of China

Southwest Institute of Technology and Engineering Cooperation Fund

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3