Novel anticorrosive coating of silicone acrylic resin modified by graphene oxide and polyaniline

Author:

Jiang Weibin1,Wen Xiaomo1,Jiang Youzhou1,Lu Hui1,Zhou Tao1ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University , Changsha 410083 , Hunan , China

Abstract

Abstract Coatings of metal surfaces is a convenient and low cost anti-corrosion issue, while corresponding defects like poor heat and corrosion resistance are also obviously hinder its further application. Hence, continuously developing new and efficient coatings is of great significance to improve anti-corrosion for metals. In this study, silicone-acrylic resin was modified by two-dimensional lamellar structure of graphene oxide (GO) though direct co-blending to improve the anti-corrosion. Then, polyaniline/graphene oxide (PANI/GO) composites was prepared by in-situ polymerization method, which innovatively achieved the combination of flake and fibrous materials to fill the voids generated when the coating is cured into a film, and enhance the density and the anti-corrosion performance of the coating. The result showed that the coating modified by PANI/GO had the better thermal stability, which T 5% and T max are increased by 44 and 5 °C, respectively. Electrochemical impedance spectroscopy (EIS) and Tafel polarization curves were employed to analyze anticorrosion performance of modified coatings explored in 3.5 wt% NaCl aqueous solution. The coating with 20 wt% GO in PANI/GO has the best corrosion resistance with corrosion potential of −0.14 (V vs. Hg/Hg2Cl2), corrosion current density of 1.8 × 10−11 A cm−2, polarization resistance of 6.06 × 1010 Ω cm2, and lower corrosion rate of 4.18 × 10−7 mm year−1 after immersion for 60 day.

Funder

National Natural Science Foundation of China

Hunan Provincial Science and Technology Department

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3