Preparation and characterization of Nd-doped double-layer silane anticorrosion coating on AZ91D magnesium alloy surface

Author:

Zhao Zhijie12,Tabish Mohammad12,Zhao Jingmao12,Anjum Muhammad Junaid12,Wang Wei12,Wei Shixiong12,Asl Vahdat Zahedi12

Affiliation:

1. College of Materials Science and Engineering , Beijing University of Chemical Technology , 100029 Beijing , China

2. Beijing Key Laboratory of Electrochemical Process and Technology for Materials , Beijing , China

Abstract

Abstract Magnesium alloys have found widespread application as engineering and functional materials in automobile, aerospace, electronics, and biomedical industries. However, these alloys are susceptible to corrosion, and the development of new anticorrosion coatings on Mg alloys surface is urgently needed. In this work, pristine and doped double-layer silane coatings were applied to the AZ91D Mg alloy surface in order to improve its corrosion resistance properties in a 3.5% NaCl solution. The doped silane coatings consisted of KH-550 as the bottom layer and Nd(NO3)3-doped bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) as the top layer. The effect of Nd(NO3)3 concentration on the corrosion inhibition properties of silane coatings was studied, and the highest corrosion resistance was achieved when the Nd(NO3)3 concentration was 5 × 10−3 mol/L. Compared to the pristine coating, the doped coating had enhanced hydrophobicity with a water contact angle of 108° and, to the best of our knowledge, one of the lowest corrosion current densities (1.51 × 10−2 μA/cm2) reported to date for treated AZ91D. These significant improvements were attributed to the presence of the Si-O-Nd network in the doped coating, leading to the uniform and homogeneous nature and excellent anticorrosion properties of Nd-doped silane coating.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3