On the GPS signal multipath at ASG-EUPOS stations

Author:

Tomaszewski Dariusz1ORCID,Pelc-Mieczkowska Renata2,Rapiński Jacek1

Affiliation:

1. Faculty of Geoengineering, Department of Geodesy , 49674 University of Warmia and Mazury in Olsztyn , Olsztyn , 10-719 , Poland

2. Faculty of Geoengineering, Department of Geoinformation and Cartography , 49674 University of Warmia and Mazury in Olsztyn , Olsztyn , 10-719 , Poland

Abstract

Abstract The accuracy of the results of satellite measurements is influenced by many factors. One of them is the multipath phenomenon resulting from reflections of the satellite signal, mainly from objects in the vicinity of the GNSS antenna. The multipath remains a domain source of ranging errors in satellite positioning. Despite the groups of multipath mitigation methods, it is impossible to totally eliminate the influence of this error on the measurement results. This error has two main effects in the case of carrier phase differential positioning. First, the multipath increases the initial search space for correct ambiguities. Secondly, the accuracy of the vector solution between the reference station and the rover receiver is affected. The authors of this article analyzed the presence of multipath in the Polish network of permanent GNSS stations ASG-EUPOS. Data from the year 2021 were used for the analysis. Two computational strategies were adopted to determine the multipath. The pseudorange multipath observable combination (MP) for L1, L2 and L5 signals was used for code measurements. In the case of the carrier phase, multipath analyses of double-differenced L1, L2, and L5 carriers between neighbouring stations were performed. Based on the research, the average multipath level for the Polish GNSS reference stations network was determined. Stations where the levels of particular combinations exceed the assumed values were successively determined. Finally, multipath models in the form of sidereal maps were created. Based on these models, six stations were identified and recommended for further analysis concerning the impact of multipath on GNSS measurements.

Funder

European Regional Development Fund

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3