Improvement of international reference ionospheric model total electron content maps: a case study using artificial neural network in Egypt

Author:

Mohamed Basma E.1ORCID,Tawfik Heba S.1,Abdelfatah Mohamed A.1,El-Fiky Gamal S.1

Affiliation:

1. Construction Department and Utilities, Faculty of Engineering , Zagazig University , Zagazig , Egypt

Abstract

Abstract An essential ionosphere parameter that can be applied for ionosphere corrections in radio systems is the ionosphere’s total electron content (TEC). TEC is a crucial parameter for ionospheric correction in the Global Navigation Satellite Systems (GNSS) of positioning, navigation, and radio science. This study uses the artificial neural network (ANN) application to improve the International Reference Ionospheric Model (IRI-2016) TEC maps across Egypt. The study period is based on the data that were accessible between 2013 and 2020. The ANN model input parameters are (year, day, hour, latitude, and longitude). The ANN1 and ANN2 estimate TEC values of the enhanced IRI-2020 and IRI-2016 according to the Center for Orbit Determination in Europe (CODE), respectively. ANN3 and ANN4 estimate TEC values of the enhanced IRI-2020 and IRI-2016 regarding IGS stations data analyzed by GNSS Analysis software for the multi-constellation and multi-frequency Precise Positioning (GAMP) model, respectively. The ANN model’s validations were based on the root mean square error (RMSE), correlation coefficient (CC), and T-test. According to the results, the suggested ANN can accurately predict the TEC over Egypt. In comparison to the IRI model, the TEC maps that the ANN models produced are significantly more in accordance with the related CODE and GAMP TEC maps. These results demonstrate that the developed approach can enhance IRI 2016 and IRI-2020s ability to estimate global TEC maps. For the ANN1 model, the mean CC and RMSE are 0.92, and 5.15 TECU for all the global data sets compared by CODE. On the other hand, the CC and RMSE between IRI-2020 and CODE are 0.847 and 7.67 TECU. For the ANN2, the mean CC and RMSE are 0.87, 5.59 TECU compared by CODE, respectively. Although the CC and RMSE between IRI-2016 and CODE are 0.820 and 9.052 TECU respectively. For the ANN3, the CC and RMSE are 0.830 and 4.87 TECU compared with GAMP for all global data, respectively. On the other hand, the CC and RMSE between IRI-2020 and GAMP are 0.644 and 10.41, respectively. For the ANN4 the CC and RMSE are 0.82, and 5.95 TECU compared with GAMP, respectively. Although the CC and RMSE between IRI-2016 and GAMP are 0.665 and 12.347 TECU respectively.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3