Ionospheric TEC prediction using FFNN during five different X Class solar flares of 2021 and 2022 and comparison with COKSM and IRI PLAS 2017

Author:

Dass Sarat C.1,Mukesh Raju2,Vijay Muthuvelan2,Kiruthiga Sivavadivel3,Mythili Shunmugam4

Affiliation:

1. School of Mathematical and Computer Sciences, Heriot-Watt University Malaysia , 62200 Putrajaya , Malaysia

2. Department of Aerospace Engineering , ACS College of Engineering , Bangalore 560074 , India

3. Department of ECE , Saranathan College of Engineering , Trichy 620012 , India

4. Department of ECE , PSNA College of Engineering and Technology , Dindigul 624622 , India

Abstract

Abstract The Ionospheric Total Electron Content (TEC) measured in the ray path of the signals directly contributes to the Range Error (RE) of the satellite signals, which affects positioning and navigation. Employing the Co-Kriging-based Surrogate Model (COKSM) to predict TEC and RE correction has proven prolific. This research attempted to test and compare the prediction capability of COKSM with an Artificial Intelligence-based Feed Forward Neural Network model (FFNN) during five X-Class Solar Flares of 2021–22. Also, the results are validated by comparing them with the IRI PLAS 2017 model. TEC, solar, and geomagnetic parameters data for Hyderabad GPS station located at 17.31° N latitude and 78.55° E longitude were collected from IONOLAB & OMNIWEB servers. The COKSM uses six days of input data to predict the 7th day TEC, whereas prediction using the FFNN model is done using 45 days of data before the prediction date. The performance evaluation is done using RMSE, NRMSE, Correlation Coefficient, and sMAPE. The average RMSE for COKSM varied from 1.9 to 9.05, for FFNN it varied from 2.72 to 7.69, and for IRI PLAS 2017 it varied from 7.39 to 11.24. Likewise, evaluation done for three different models over five different X-class solar flare events showed that the COKSM performed well during the high-intensity solar flare conditions. On the other hand, the FFNN model performed well during high-resolution input data conditions. Also, it is notable that both models performed better than the IRI PLAS 2017 model and are suitable for navigational applications.

Funder

VTU TEQIP

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3