A proposed neural network model for obtaining precipitable water vapor

Author:

Al-Eshmawy Hadeer1,Abdelfatah Mohamed A.1,El-Fiky Gamal S.1

Affiliation:

1. Construction Department and Utilities, Faculty of Engineering , Zagazig University , Zagazig 44519 , Egypt

Abstract

Abstract The atmospheric Precipitable water vapor (PWV) is a variable key for weather forecasting and climate change. It is a considerable component of the atmosphere, influencing numerous atmospheric processes, and having physical characteristics. It can be measured directly using radiosonde stations (RS), which are not always accessible and difficult to measure with acceptable spatial and time precision. This study uses the artificial neural network (ANN) application to propose a simple model based on RS data to estimate PWV from surface metrological data. Ten RS stations were used to develop the new model for eight and a half years. In addition, two and a half years of data were used to validate the developed model. The study period is based on the data accessible between 2010 and 2020. The new model needs to collect (vapor pressure, temperature, latitude, longitude, height, day of year, and relative humidity) as input parameters in ANN to predict the PWV. The ANN model validations were based on the root mean square (RMS), correlation coefficient (CC), and T-test. According to the results, the proposed ANN can accurately predict the PWV over Egypt. The results of the new ANN model and eight other empirical models (Saastamoinen, Askne and Nordius, Okulov et al., Maghrabi et al., Phokate., Falaiye et al. (A&B), Qian et al. and ERA 5) are compared in addition, the new PWV model can achieve the best performance with RMS of 0.21 mm. The new model can serve as a will be of practical utility with a high degree of precision in PWV estimation.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3