A comparative study on adhesive properties of nanoparticle reinforced epoxy bonded single-strap repaired composites

Author:

Karaoğlan Harun1,Erkliğ Ahmet1,Doğan Nurettin Furkan1,Bulut Mehmet2

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering , Gaziantep University , Gaziantep 27310 , Türkiye

2. Mechanical Engineering Department, Faculty of Engineering , Hakkari University , Hakkari 30000 , Türkiye

Abstract

Abstract This study aimed to evaluate the impact of nanoparticle inclusion and patch size on the bonding performance of single-strap repaired glass-reinforced composite plates through experimental investigations. Epoxy adhesive was modified with three different nanoparticles: nano-silica (NS), nano-graphene (NG), and nano-clay (NC) at varying weight contents. The patch repair performance of the test samples was evaluated using two patch ratios (Patch diameter (D)/Hole diameter (d) = 2 and 3) to explore the influence of patch size on repair effectiveness. GFRP composite base plates having a 10 mm diameter hole in the middle were patch repaired by using patches with the same material. Tensile tests were conducted to compare the tensile performance of the repaired composite samples, and the results were compared with the samples with and without holes. Based on the findings, it was noted that samples with a larger patch ratio (D/d = 3) can withstand higher tensile loads compared to those with a patch ratio of 2. Moreover, it was found that the specimen repaired with 3 % by weight NC-filled epoxy adhesive showed the greatest increase in tensile load value. This increase was recorded at both patch rates, with a percentage improvement of 2.8 and 19.54 % compared to pure epoxy adhesive. Also, it was observed that when the patch ratio was 3, the 3 % NS-filled adhesive showed an increase of 3.3 %. On the other hand, all combinations of NG-filled adhesive showed a decrease in maximum tensile load values.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3