Impact of fiber diameter on mechanical and water absorption properties of short bamboo fiber-reinforced polyester composites

Author:

Tahir Danish12,Karim Muhammad Ramzan2,Wu Shuying1,Rehan Muhammad3,Tahir Muhammad4,Zaigham Sheher Bano5,Riaz Nishat2

Affiliation:

1. School of Aerospace, Mechanical and Mechatronic Engineering , The University of Sydney , Sydney , NSW 2006 , Australia

2. Faculty of Materials and Chemical Engineering , Ghulam Ishaq Khan Institute of Engineering Sciences and Technology , Swabi , KPK , Pakistan

3. Department of Industrial and Systems Engineering , 26680 The Hong Kong Polytechnic University , Hung Hom , Hong Kong , P.R. China

4. Institute of Materials, Minerals and Mining Engineering , Abbottabad University of Sciences and Technology , Abbottabad , 22500, KPK , Pakistan

5. Department of Ocean System Engineering , Jeju National University , Jeju City , South Korea

Abstract

Abstract This study aims to investigate the effect of fiber diameter on the mechanical and water absorption characteristics of short bamboo fiber-reinforced polyester composites. Three different fiber sizes (180–250 µm, 250–500 µm, and 700–1000 µm) were used to prepare composites with varying fiber loadings of 10 wt.%, 20 wt.%, and 30 wt.%. The fabricated composites were cut to standard dimensions, and tension tests, impact tests, and water absorption tests were performed. Reproducible results were obtained, revealing that using fibers of smaller diameter (180–250 µm) increased the tensile strength of the composite by 20 % compared to composites with larger diameter fibers (700–1000 µm), while the tensile modulus showed a 22 % enhancement with decreasing fiber diameter. Composites with larger diameter fibers exhibited more defects (voids and matrix detachment), as revealed by SEM analysis of fractured surfaces. The impact strength of composites with a diameter size of 700–1000 µm increased by 33 % compared to composites reinforced with the smallest fiber diameter. Water absorption of the composites was also studied by long-term immersion in water, showing that water intake was high initially, reaching a saturation point after a certain time interval. The absorbed water values indicated that composites with the smallest diameter (180–250 µm) showed maximum water intake due to the creation of more water intake sites (increased interfacial area), while composites with the largest diameter fibers (700–1000 µm) exhibited the least water absorption as the interaction region between fibers and matrix was reduced.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3