Synthesis and characterization of ethylenediamine-modified F-44 phenolic epoxy fiber

Author:

Wu Juan1,Jiao Mingli1,Wang Hao1,Li Keke1,Yang Muen1,Li Pengyu1,Yang Kai2

Affiliation:

1. School of Materials & Chemical Engineering, Zhongyuan University of Technology , Zhengzhou 45007 , China

2. School of Fashion, Zhongyuan University of Technology , Zhengzhou 45007 , China

Abstract

Abstract F-44 phenolic epoxy fibers were produced through high-temperature dry spinning utilizing F-44 phenolic epoxy resin as the base material, combined with n-butanol and ethylenediamine (EDA) as the curing agent. The fibers were subsequently analyzed for their structural, thermal stability, microstructural, and mechanical properties using techniques such as Fourier transform infrared spectroscopy, micro-infrared imaging, thermogravimetric analysis, nuclear magnetic resonance, scanning electron microscopy, and fiber strength testing. The limitations of phenolic resins, including high brittleness, poor toughness, and low elongation at break, restrict their potential applications, necessitating modifications to broaden their utility. Research findings indicate that modifying EDA induces a ring-opening reaction of epoxy groups, thereby enhancing the resin’s structure and improving the thermal stability and mechanical properties of fibers. The thermal stability and mechanical strength of the fibers were optimized at an EDA concentration of 2.0 wt% and curing time of 30 min, resulting in a tensile strength of 105 MPa and an elongation at break of 27.6 %.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3