Noise Properties Of Thick-Film Conducting Lines For Integrated Inductors

Author:

Stadler Adam Witold,Kolek Andrzej,Mleczko Krzysztof,Zawiślak Zbigniew,Dziedzic Andrzej,Nowak Damian

Abstract

Abstract Studies of noise properties of thick-film conducting lines from Au or PdAg conductive pastes on LTCC or alumina substrates are reported. Experiments have been carried out at the room temperature on samples prepared in the form of meanders by traditional screen-printing or laser-shaping technique. Due to a low resistance of the devices under test (DUTs), low-frequency noise spectra have been measured for the dc-biased samples arranged in a bridge configuration, transformer-coupled to a low-noise amplifier. The detailed analysis of noise sources in the signal path and its transfer function, including the transformer, has been carried out, and a procedure for measurement setup self-calibration has been described. The 1/f noise component originating from resistance fluctuations has been found to be dominant in all DUTs. The analysis of experimental data leads to the conclusion that noise is produced in the bends of meanders rather than in their straight segments. It occurs that noise of Au-based laser-shaped lines is significantly smaller than screen-printed ones. PdAg lines have been found more resistive but simultaneously less noisy than Au-based lines.

Publisher

Walter de Gruyter GmbH

Reference18 articles.

1. Correlation between fnoise and grain boundaries in thin gold films;Verbruggen;Phys Rev,1987

2. Electrochromic foil - based devices : Optical transmittance and modulation range , effect of ultraviolet irradiation , and quality assessment by fcurrent noise;Granqvist;Thin Solid Films,2008

3. Noise spectroscopy of resistive components at elevated temperature;Stadler;Metrol Meas Syst,2014

4. Next generation integral passives : materials processes and integration of resistors and capacitors on PWB substrates Journal of Material Science : Materials in;Bhattacharya;Electronics,2000

5. Noise as a diagnostic and prediction tool in reliability physics;Jevtić;Microelectronics Reliability,1995

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3