A Statistical Approach To Prediction Of The CMM Drift Behaviour Using A Calibrated Mechanical Artefact

Author:

Cuesta Eduardo,Alvarez Braulio,Sanchez-Lasheras Fernando,Gonzalez-Madruga Daniel

Abstract

Abstract This paper presents a multivariate regression predictive model of drift on the Coordinate Measuring Machine (CMM) behaviour. Evaluation tests on a CMM with a multi-step gauge were carried out following an extended version of an ISO evaluation procedure with a periodicity of at least once a week and during more than five months. This test procedure consists in measuring the gauge for several range volumes, spatial locations, distances and repetitions. The procedure, environment conditions and even the gauge have been kept invariables, so a massive measurement dataset was collected over time under high repeatability conditions. A multivariate regression analysis has revealed the main parameters that could affect the CMM behaviour, and then detected a trend on the CMM performance drift. A performance model that considers both the size of the measured dimension and the elapsed time since the last CMM calibration has been developed. This model can predict the CMM performance and measurement reliability over time and also can estimate an optimized period between calibrations for a specific measurement length or accuracy level.

Publisher

Walter de Gruyter GmbH

Reference26 articles.

1. Evaluation of CMM for flatness measurements;Sidki;Meas Syst,2008

2. Giacomo CMM uncertainty analysis with factorial design;Piratelli;Precis Eng,2003

3. Simple method of D error compensation of triggering probes on coordinate measuring machine;Wozniak;Metrol Meas Syst,2006

4. Chiffre Uncertainty analysis of point - by - point sampling complex surfaces using touch probe CMMs DOE for complex surfaces verification with CMM;Barini;Precis Eng,2010

5. Analytical estimation of coordinate measurement uncertainty;Jakubiec;Measurement,2012

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3