A highly accurate delta check method using deep learning for detection of sample mix-up in the clinical laboratory

Author:

Zhou Rui12,Liang Yu-fang1,Cheng Hua-Li1,Wang Wei3,Huang Da-wei4,Wang Zhe5,Feng Xiang5,Han Ze-wen5,Song Biao5,Padoan Andrea6ORCID,Plebani Mario6ORCID,Wang Qing-tao12

Affiliation:

1. Department of Laboratory Medicine , Beijing Chao-yang Hospital, Capital Medical University , Beijing , P.R. China

2. Beijing Center for Clinical Laboratories , Beijing , P.R. China

3. Department of Blood Transfusion , Beijing Ditan Hospital, Capital Medical University , Beijing , P.R. China

4. Department of Laboratory Medicine , Beijing Longfu Hospital , Beijing , P.R. China

5. Inner Mongolia Wesure Date Technology Co., Ltd , Inner Mongolia , P.R. China

6. Department of Laboratory Medicine , University Hospital of Padova , Padova , Italy

Abstract

Abstract Objectives Delta check (DC) is widely used for detecting sample mix-up. Owing to the inadequate error detection and high false-positive rate, the implementation of DC in real-world settings is labor-intensive and rarely capable of absolute detection of sample mix-ups. The aim of the study was to develop a highly accurate DC method based on designed deep learning to detect sample mix-up. Methods A total of 22 routine hematology test items were adopted for the study. The hematology test results, collected from two hospital laboratories, were independently divided into training, validation, and test sets. By selecting six mainstream algorithms, the Deep Belief Network (DBN) was able to learn error-free and artificially (intentionally) mixed sample results. The model’s analytical performance was evaluated using training and test sets. The model’s clinical validity was evaluated by comparing it with three well-recognized statistical methods. Results When the accuracy of our model in the training set reached 0.931 at the 22nd epoch, the corresponding accuracy in the validation set was equal to 0.922. The loss values for the training and validation sets showed a similar (change) trend over time. The accuracy in the test set was 0.931 and the area under the receiver operating characteristic curve was 0.977. DBN demonstrated better performance than the three comparator statistical methods. The accuracy of DBN and revised weighted delta check (RwCDI) was 0.931 and 0.909, respectively. DBN performed significantly better than RCV and EDC. Of all test items, the absolute difference of DC yielded higher accuracy than the relative difference for all methods. Conclusions The findings indicate that input of a group of hematology test items provides more comprehensive information for the accurate detection of sample mix-up by machine learning (ML) when compared with a single test item input method. The DC method based on DBN demonstrated highly effective sample mix-up identification performance in real-world clinical settings.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3