Developing a machine learning prediction algorithm for early differentiation of urosepsis from urinary tract infection

Author:

Su Mingkuan1,Guo Jianfeng1,Chen Hongbin1,Huang Jiancheng1

Affiliation:

1. Department of Laboratory Medicine , Mindong Hospital Affiliated to Fujian Medical University , Fuan City , P.R. China

Abstract

Abstract Objectives Early recognition and timely intervention for urosepsis are key to reducing morbidity and mortality. Blood culture has low sensitivity, and a long turnaround time makes meeting the needs of clinical diagnosis difficult. This study aimed to use biomarkers to build a machine learning model for early prediction of urosepsis. Methods Through retrospective analysis, we screened 157 patients with urosepsis and 417 patients with urinary tract infection. Laboratory data of the study participants were collected, including data on biomarkers, such as procalcitonin, D-dimer, and C-reactive protein. We split the data into training (80%) and validation datasets (20%) and determined the average model prediction accuracy through cross-validation. Results In total, 26 variables were initially screened and 18 were statistically significant. The influence of the 18 variables was sorted using three ranking methods to further determine the best combination of variables. The Gini importance ranking method was found to be suitable for variable filtering. The accuracy rates of the six machine learning models in predicting urosepsis were all higher than 80%, and the performance of the artificial neural network (ANN) was the best among all. When the ANN included the eight biomarkers with the highest influence ranking, its model had the best prediction performance, with an accuracy rate of 92.9% and an area under the receiver operating characteristic curve of 0.946. Conclusions Urosepsis can be predicted using only the top eight biomarkers determined by the ranking method. This data-driven predictive model will enable clinicians to make quick and accurate diagnoses.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3