Automated prediction of low ferritin concentrations using a machine learning algorithm

Author:

Kurstjens Steef1,de Bel Thomas2,van der Horst Armando1,Kusters Ron13,Krabbe Johannes45,van Balveren Jasmijn36

Affiliation:

1. Laboratory of Clinical Chemistry and Hematology , Jeroen Bosch Hospital , ’s Hertogenbosch , the Netherlands

2. Diagnostic Image Analysis Group, Radboudumc , Nijmegen , the Netherlands

3. Department of Health Technology and Services Research , Technical Medical Centre, University of Twente , Enschede , the Netherlands

4. Laboratory of Clinical Chemistry and Laboratory Medicine , Medisch Spectrum Twente , Enschede , the Netherlands

5. Laboratory of Clinical Chemistry and Laboratory Medicine , Medlon BV , Enschede , the Netherlands

6. Laboratory of Clinical Chemistry and Hematology , St Jansdal, Harderwijk , the Netherlands

Abstract

Abstract Objectives Computational algorithms for the interpretation of laboratory test results can support physicians and specialists in laboratory medicine. The aim of this study was to develop, implement and evaluate a machine learning algorithm that automatically assesses the risk of low body iron storage, reflected by low ferritin plasma levels, in anemic primary care patients using a minimal set of basic laboratory tests, namely complete blood count and C-reactive protein (CRP). Methods Laboratory measurements of anemic primary care patients were used to develop and validate a machine learning algorithm. The performance of the algorithm was compared to twelve specialists in laboratory medicine from three large teaching hospitals, who predicted if patients with anemia have low ferritin levels based on laboratory test reports (complete blood count and CRP). In a second round of assessments the algorithm outcome was provided to the specialists in laboratory medicine as a decision support tool. Results Two separate algorithms to predict low ferritin concentrations were developed based on two different chemistry analyzers, with an area under the curve of the ROC of 0.92 (Siemens) and 0.90 (Roche). The specialists in laboratory medicine were less accurate in predicting low ferritin concentrations compared to the algorithms, even when knowing the output of the algorithms as support tool. Implementation of the algorithm in the laboratory system resulted in one new iron deficiency diagnosis on average per day. Conclusions Low ferritin levels in anemic patients can be accurately predicted using a machine learning algorithm based on routine laboratory test results. Moreover, implementation of the algorithm in the laboratory system reduces the number of otherwise unrecognized iron deficiencies.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3