Top-down and bottom-up approaches for the estimation of measurement uncertainty in coagulation assays

Author:

Lim Yong Kwan1,Kweon Oh Joo1,Lee Mi-Kyung1,Kim Bohyun2,Kim Hye Ryoun3

Affiliation:

1. Department of Laboratory Medicine , Chung-Ang University College of Medicine , Seoul , Republic of Korea

2. Department of Laboratory Medicine , Soonchunhyang University Cheonan Hospital , Cheonan , Republic of Korea

3. Department of Laboratory Medicine , Chung-Ang University College of Medicine , 102 Heukseok-ro, Dongjak-Ku , Seoul 06973 , Republic of Korea , Phone: +82-2-6299-2718, Fax: +82 2-6298-8630

Abstract

Abstract Background The assessment of measurement uncertainty (MU) in clinical laboratories is essential to the reliable interpretation of results in clinical laboratories. However, despite the introduction of various methods for the expression of uncertainty in measurement, the MUs of coagulation tests have not been extensively studied. The aim of this study was to quantify the MU of various coagulation assays according to international guidelines and to report an expected confidence in the quality of coagulation assays. Methods We selected activated partial thromboplastin time, international normalized ratio (INR), protein C/S, antithrombin, fibrinogen, and Factor V/VIII/X to quantify the MUs of two coagulation testing systems: ACL TOP 750 CTS (Instrumentation Laboratory, Bedford, MA, USA) and STA Compact (Diagnostica Stago, Asnières-sur-Seine, France). We used international standards and interlaboratory comparison results in accordance with international guidelines in a top-down approach to the assessment of MU. For INR, MU was estimated in a bottom-up approach using reference thromboplastin and certified plasmas. Results Top-down approaches resulted in MUs between 3.3% and 21.3% for each measurand. In the bottom-up approach, MUs of INR values ranged from 10.9% to 26.4% and showed an upward trend as INR increased. Conclusions In this study, we were successful in quantifying MU of coagulation assays using practical methods. Our results demonstrated that top-down and bottom-up approaches were adequate for coagulation assays. However, some assays showed significant biases against international standards; therefore, standardization would be necessary to ensure more reliable patient results.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry, medical,Clinical Biochemistry,General Medicine

Reference29 articles.

1. EUROLAB. EUROLAB Technical Report No. 1/2002. EUROLAB Technical Report. Brussels, Belgium: EUROLAB, 2002.

2. Padoan A, Sciacovelli L, Aita A, Antonelli G, Plebani M. Measurement uncertainty in laboratory reports: a tool for improving the interpretation of test results. Clin Biochem 2018;57:41–7.

3. White GH. Basics of estimating measurement uncertainty. Clin Biochem Rev 2008;29(Suppl 1):S53–60.

4. Qin Y, Zhou R, Wang W, Yin H, Yang Y, Yue Y, et al. Uncertainty evaluation in clinical chemistry, immunoassay, hematology and coagulation analytes using only external quality assessment data. Clin Chem Lab Med 2018;56:1447–57.

5. ISO. ISO 15189:2012, Medical Laboratories – Requirements for Quality and Competence. Geneva, Switzerland: ISO, 2012.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3