The stability of 65 biochemistry analytes in plasma, serum, and whole blood
Author:
Zhou Janet1ORCID, Fabros Anselmo2, Lam Sarah Jane2, Coro Anna2, Selvaratnam Rajeevan12ORCID, Brinc Davor12, Di Meo Ashley12
Affiliation:
1. Department of Laboratory Medicine & Pathobiology , 233837 University of Toronto , Toronto , ON , Canada 2. Department of Clinical Biochemistry , 574811 University Health Network , Toronto , ON , Canada
Abstract
Abstract
Objectives
The pre-analytical stability of various biochemical analytes requires careful consideration, as it can lead to the release of erroneous laboratory results. There is currently significant variability in the literature regarding the pre-analytical stability of various analytes. The aim of this study was to determine the pre-analytical stability of 65 analytes in whole blood, serum and plasma using a standardized approach.
Methods
Blood samples were collected from 30 healthy volunteers (10 volunteers per analyte) into five vacutainers; either SST, Li-heparin, K2-EDTA, or Na-fluoride/K-oxalate. Several conditions were tested, including delayed centrifugation with storage of whole blood at room temperature (RT) for 8 h, delayed centrifugation with storage of whole blood at RT or 4 °C for 24 h, and immediate centrifugation with storage of plasma or serum at RT for 24 h. Percent deviation (% PD) from baseline was calculated for each analyte and compared to the maximum permissible instability (MPI) derived from intra- and inter-individual biological variation.
Results
The majority of the analytes evaluated remained stable across all vacutainer types, temperatures, and timepoints tested. Glucose, potassium, and aspartate aminotransferase, among others, were significantly impacted by delayed centrifugation, having been found to be unstable in whole blood specimens stored at room temperature for 8 h.
Conclusions
The data presented provides insight into the pre-analytical variables that impact the stability of routine biochemical analytes. This study may help to reduce the frequency of erroneous laboratory results released due to exceeded stability and reduce unnecessary repeat phlebotomy for analytes that remain stable despite delayed processing.
Publisher
Walter de Gruyter GmbH
Reference60 articles.
1. Spithoven, EM, Bakker, SJL, Kootstra-Ros, JE, Jong, DPE, Gansevoort, RT. Stability of creatinine and cystatin C in whole blood. Clin Biochem 2013;46:1611–4. https://doi.org/10.1016/j.clinbiochem.2013.06.022. 2. Oddoze, C, Lombard, E, Portugal, H. Stability study of 81 analytes in human whole blood, in serum and in plasma. Clin Biochem 2012;45:464–9. https://doi.org/10.1016/j.clinbiochem.2012.01.012. 3. Monneret, D, Godmer, A, Le Guen, R, Bravetti, C, Emeraud, C, Marteau, A, et al.. Stability of routine biochemical analytes in whole blood and plasma from lithium heparin gel tubes during 6-hr storage. J Clin Lab Anal 2016;30:602–9. https://doi.org/10.1002/jcla.21909. 4. Dupuy, AM, Badiou, S, Daubin, D, Bargnoux, AS, Magnan, C, Klouche, K, et al.. Comparison of Barricor™ vs. lithium heparin tubes for selected routine biochemical analytes and evaluation of post centrifugation stability. Biochem Med 2018;28:020902. https://doi.org/10.11613/bm.2018.020902. 5. Dupuy, AM, Cristol, JP, Vincent, B, Bargnoux, AS, Mendes, M, Philibert, P, et al.. Stability of routine biochemical analytes in whole blood and plasma/serum: focus on potassium stability from lithium heparin. Clin Chem Lab Med 2018;56:413–21. https://doi.org/10.1515/cclm-2017-0292.
|
|