Turnaround time prediction for clinical chemistry samples using machine learning

Author:

Tsai Eline R.12,Demirtas Derya1,Hoogendijk Nick1,Tintu Andrei N.2,Boucherie Richard J.1

Affiliation:

1. Center for Healthcare Operations Improvement and Research (CHOIR), University of Twente , Enschede , The Netherlands

2. Department of Clinical Chemistry , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands

Abstract

Abstract Objectives Turnaround time (TAT) is an essential performance indicator of a medical diagnostic laboratory. Accurate TAT prediction is crucial for taking timely action in case of prolonged TAT and is important for efficient organization of healthcare. The objective was to develop a model to accurately predict TAT, focusing on the automated pre-analytical and analytical phase. Methods A total of 90,543 clinical chemistry samples from Erasmus MC were included and 39 features were analyzed, including priority level and workload in the different stages upon sample arrival. PyCaret was used to evaluate and compare multiple regression models, including the Extra Trees (ET) Regressor, Ridge Regression and K Neighbors Regressor, to determine the best model for TAT prediction. The relative residual and SHAP (SHapley Additive exPlanations) values were plotted for model evaluation. Results The regression-tree-based method ET Regressor performed best with an R2 of 0.63, a mean absolute error of 2.42 min and a mean absolute percentage error of 7.35%, where the average TAT was 30.09 min. Of the test set samples, 77% had a relative residual error of at most 10%. SHAP value analysis indicated that TAT was mainly influenced by the workload in pre-analysis upon sample arrival and the number of modules visited. Conclusions Accurate TAT predictions were attained with the ET Regressor and features with the biggest impact on TAT were identified, enabling the laboratory to take timely action in case of prolonged TAT and helping healthcare providers to improve planning of scarce resources to increase healthcare efficiency.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3