An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for the quantification of aldosterone in human serum and plasma

Author:

Taibon Judith1,Santner Tobias1,Singh Neeraj1,Ibrahim Sara Cheikh1,Babitzki Galina1,Köppl Daniel2,Gaudl Alexander3,Geistanger Andrea1,Ceglarek Uta3,Rauh Manfred2,Geletneky Christian1

Affiliation:

1. Roche Diagnostics GmbH , Penzberg , Germany

2. Clinic for Children and Adolescents, University Hospital Erlangen , Erlangen , Germany

3. Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig , Leipzig , Germany

Abstract

Abstract Objectives An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC MS/MS)-based candidate reference measurement procedure (RMP) for aldosterone quantification in human serum and plasma is presented. Methods The material used in this RMP was characterized by quantitative nuclear magnetic resonance (qNMR) to assure traceability to SI Units. For liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis a two-dimensional heart cut LC approach, in combination with an optimal supported liquid extraction protocol, was established for the accurate analysis of aldosterone in human serum and plasma in order to minimize matrix effects and avoid the co-elution of interferences. Assay validation was performed according to current guidelines. Selectivity and specificity were assessed using spiked serum; potential matrix effects were examined by a post column infusion experiment and the comparison of standard line slopes. An extensive protocol over 5 days was applied to determine precision, accuracy and trueness. Measurement uncertainty was evaluated according to the Guide to the Expression of Uncertainty in Measurement (GUM), for which three individual sample preparations were performed on at least two different days. Results The RMP allowed aldosterone quantification within the range of 20–1,200 pg/mL without interference from structurally-related compounds and no evidence of matrix effects. Intermediate precision was ≤4.7% and repeatability was 2.8–3.7% for all analyte concentrations. The bias ranged between −2.2 and 0.5% for all levels and matrices. Total measurement uncertainties for target value assignment (n=6) were found to be ≤2.3%; expanded uncertainties were ≤4.6% (k=2) for all levels. Conclusions The RMP showed high analytical performance for aldosterone quantification in human serum and plasma. The traceability to SI units was established by qNMR content determination of aldosterone, which was utilized for direct calibration of the RMP. Thus, this candidate RMP is suitable for routine assay standardization and evaluation of clinical samples.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3