Affiliation:
1. School of Mathematics and Statistics , Wuhan University , Wuhan 430072 , P. R. China
2. School of Mathematics , Tianjin University , Tianjin 300072 , P. R. China
Abstract
Abstract
Let
n
≥
2
{n\geq 2}
be an integer,
P
=
diag
(
-
I
n
-
κ
,
I
κ
,
-
I
n
-
κ
,
I
κ
)
{P=\mathrm{diag}(-I_{n-\kappa},I_{\kappa},-I_{n-\kappa},I_{\kappa})}
for some integer
κ
∈
[
0
,
n
]
{\kappa\in[0,n]}
, and let
Σ
⊂
ℝ
2
n
{\Sigma\subset{\mathbb{R}}^{2n}}
be a partially symmetric compact convex hypersurface, i.e.,
x
∈
Σ
{x\in\Sigma}
implies
P
x
∈
Σ
{Px\in\Sigma}
, and
(
r
,
R
)
{(r,R)}
-pinched.
In this paper, we prove that when
R
/
r
<
5
/
3
{{R/r}<\sqrt{5/3}}
and
0
≤
κ
≤
[
n
-
1
2
]
{0\leq\kappa\leq[\frac{n-1}{2}]}
, there exist at least
E
(
n
-
2
κ
-
1
2
)
+
E
(
n
-
2
κ
-
1
3
)
{E(\frac{n-2\kappa-1}{2})+E(\frac{n-2\kappa-1}{3})}
non-hyperbolic P-invariant closed characteristics on Σ.
In addition, when
R
/
r
<
3
/
2
{{R/r}<\sqrt{3/2}}
,
[
n
+
1
2
]
≤
κ
≤
n
{[\frac{n+1}{2}]\leq\kappa\leq n}
and Σ carries exactly n
P-invariant closed characteristics, then there exist at least
2
E
(
2
κ
-
n
-
1
4
)
+
E
(
n
-
κ
-
1
3
)
{2E(\frac{2\kappa-n-1}{4})+E(\frac{n-\kappa-1}{3})}
non-hyperbolic P-invariant closed characteristics on Σ,
where the function
E
(
a
)
{E(a)}
is defined as
E
(
a
)
=
min
{
k
∈
ℤ
∣
k
≥
a
}
{E(a)=\min{\{k\in{\mathbb{Z}}\mid k\geq a\}}}
for any
a
∈
ℝ
{a\in\mathbb{R}}
.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献