Affiliation:
1. Department of Mathematics , Zhejiang Normal University , Jinhua , Zhejiang 321004 , P. R. China
2. Department of Mathematics , University of Arizona , Tucson , AZ 85750 , USA
Abstract
Abstract
This paper discusses a high-order Melnikov method for periodically perturbed equations. We introduce a new method to compute
M
k
(
t
0
)
{M_{k}(t_{0})}
for all
k
≥
0
{k\geq 0}
, among which
M
0
(
t
0
)
{M_{0}(t_{0})}
is the traditional Melnikov function, and
M
1
(
t
0
)
,
M
2
(
t
0
)
,
…
{M_{1}(t_{0}),M_{2}(t_{0}),\ldots\,}
are its high-order correspondences. We prove that, for all
k
≥
0
{k\geq 0}
,
M
k
(
t
0
)
{M_{k}(t_{0})}
is a sum of certain multiple integrals, the integrand of which we can explicitly compute. In particular, we obtain explicit integral formulas for
M
0
(
t
0
)
{M_{0}(t_{0})}
and
M
1
(
t
0
)
{M_{1}(t_{0})}
. We also study a concrete equation for which the explicit formula of
M
1
(
t
0
)
{M_{1}(t_{0})}
is used to prove the existence of a transversal homoclinic intersection in the case of
M
0
(
t
0
)
≡
0
{M_{0}(t_{0})\equiv 0}
.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference23 articles.
1. V. M. Alekseev,
Quasiradom dynamical systems. I,
Math. USSR Sbornik 5 (1968), 73–128.
10.1070/SM1968v005n01ABEH002587
2. V. M. Alekseev,
Quasiradom dynamical systems. II,
Math. USSR Sbornik 6 (1968), 506–560.
3. V. M. Alekseev,
Quasiradom dynamical systems. III,
Math. USSR Sbornik 7 (1969), 1–43.
4. G. D. Birkhoff,
Nouvelles recherches sur les systemes dynamiques,
Mem. Pontif. Acad. Sci. Novi Lyncaei III. Ser. 1 (1935), 85–216.
5. A. Buica, A. Gasull and J. Yang,
The third order Melnikov function of a quadratic center under quadratic perturbations,
J. Math. Anal. Appl. 331 (2007), 443–454.
10.1016/j.jmaa.2006.09.008
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献