Sharp Constants and Optimizers for a Class of Caffarelli–Kohn–Nirenberg Inequalities

Author:

Lam Nguyen1,Lu Guozhen2

Affiliation:

1. Department of Mathematics , University of British Columbia and The Pacific Institute for the Mathematical Sciences , Vancouver , BC, V6T 1Z4 , Canada

2. Department of Mathematics , University of Connecticut , Storrs , CT 06269 , USA

Abstract

Abstract In this paper, we use a suitable transform of quasi-conformal mapping type to investigate the sharp constants and optimizers for the following Caffarelli–Kohn–Nirenberg inequalities for a large class of parameters ( r , p , q , s , μ , σ ) {(r,p,q,s,\mu,\sigma)} and 0 a 1 {0\leq a\leq 1} : ( | u | r d x | x | s ) 1 r C ( | u | p d x | x | μ ) a p ( | u | q d x | x | σ ) 1 - a q . \bigg{(}\int\lvert u|^{r}\frac{dx}{|x|^{s}}\bigg{)}^{\frac{1}{r}}\leq C\bigg{(% }\int\lvert\nabla u|^{p}\frac{dx}{\lvert x|^{\mu}}\bigg{)}^{\frac{a}{p}}\bigg{% (}\int\lvert u|^{q}\frac{dx}{\lvert x|^{\sigma}}\bigg{)}^{\frac{1-a}{q}}. We compute the best constants and the explicit forms of the extremal functions in numerous cases. When 0 < a < 1 {0<a<1} , we can deduce the existence and symmetry of optimizers for a wide range of parameters. Moreover, in the particular cases r = p q - 1 p - 1 {r=p\frac{q-1}{p-1}} and q = p r - 1 p - 1 {q=p\frac{r-1}{p-1}} , the forms of maximizers will also be provided in the spirit of Del Pino and Dolbeault [14, 15]. In the case a = 1 {a=1} , that is, the Caffarelli–Kohn–Nirenberg inequality without the interpolation term, we will provide the exact maximizers for all the range of μ 0 {\mu\geq 0} . The Caffarelli–Kohn–Nirenberg inequalities with arbitrary norms on Euclidean spaces will also be considered in the spirit of Cordero-Erausquin, Nazaret and Villani [13]. Due to the absence of the classical Polyá–Szegö inequality in the weighted case, we establish a symmetrization inequality with power weights which is of independent interest.

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Caffarelli-Kohn-Nirenberg identities, inequalities and their stabilities;Journal de Mathématiques Pures et Appliquées;2024-02

2. Remainder terms of a nonlocal Sobolev inequality;Mathematische Nachrichten;2023-12-06

3. Improved Poincaré-Hardy inequalities on certain subspaces of the Sobolev space;Proceedings of the American Mathematical Society;2023-04-20

4. Caffarelli–Kohn–Nirenberg inequalities for curl-free vector fields and second order derivatives;Calculus of Variations and Partial Differential Equations;2023-03-17

5. Hardy-Sobolev Inequalities with Dunkl Weights;Acta Mathematica Vietnamica;2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3