Author:
Premet Alexander,Skryabin Serge
Abstract
Abstract
Let ℒ be an n-dimensional restricted Lie algebra over an algebraically closed field K of characteristic p > 0. Given a linear function ξ on ℒ and a scalar λ ∈ K, we introduce an associative algebra Uξ,λ (ℒ) of dimension pn over K. The algebra Uξ,1 (ℒ) is isomorphic to the reduced enveloping algebra Uξ (ℒ), while the algebra Uξ,0 (ℒ) is nothing but the reduced symmetric algebra Sξ (ℒ). Deformation arguments (applied to this family of algebras) enable us to derive a number of results on dimensions of simple ℒ-modules. In particular, we give a new proof of the Kac-Weisfeiler conjecture (see [41], [35]) which uses neither support varieties nor the classification of nilpotent orbits, and compute the maximal dimension of simple ℒ-modules for all ℒ having a toral stabiliser of a linear function.
Subject
Applied Mathematics,General Mathematics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献