Abstract
Abstract
It is proved that every minimal surface with one or two boundary components in a simply connected Riemannian manifold with sectional curvature bounded above by a nonpositive constant K satisfies the sharp isoperimetric inequality 4π A ≦ L2 + K A2. Here equality holds if and only if the minimal surface is a geodesic disk in a surface of constant Gaussian curvature K.
Subject
Applied Mathematics,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献