An approach for an extension of the deflagration model in containment code system COCOSYS to separate burned and unburned atmosphere via junctions

Author:

Hoffrichter Johannes1ORCID,Koch Marco K.1ORCID

Affiliation:

1. Plant Simulation and Safety Group , Ruhr-Universität Bochum , Universitätsstraße 150 , Bochum 44801 , Germany

Abstract

Abstract In case of a postulated severe accident in a water-cooled nuclear power plant significant amounts of hydrogen (H2) and carbon monoxide (CO) can be generated and released into the containment or reactor building where it might form a combustible mixture with air assuming passive autocatalytic recombiners are not available. In case of ignition, pressure peaks might occur, that are relevant for the integrity of safety relevant equipment and the containment or reactor building. It is therefore important for safety analysis to be able to correctly predict combustion phenomena that might occur. The accident analysis code AC2 2021.0 which is developed by Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) includes the Containment Code System (COCOSYS version 3.1) for the simulation of containment phenomena. COCOSYS contains the model FRONT for the simulation of premixed deflagration of H2 and CO. Recent code validation using H2 deflagration tests conducted in the multi-compartment THAI+ test facility shows that the flame propagation stops prematurely in simulations of some tests. This is partly attributed to the missing separation of burned and unburned atmosphere which leads to a reduction in fuel concentration in not yet burning zones connected to a burning zone. Model improvement potential was identified which is addressed in this paper. A model extension to separate burned and unburned atmosphere via a junction model is proposed and implemented into a development version of COCOSYS 3.1. First validation results using the THAI test HD-39 are discussed that show improved prediction capability by the extended model.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Reference31 articles.

1. Al-Khishali, K., Bradley, D., and Hall, S. (1983). Turbulent combustion of near-limit hydrogen-air mixtures. Combust. Flame 54: 61–70, https://doi.org/10.1016/0010-2180(83)90022-6.

2. Arndt, S., Band, S., Beck, S., Eschricht, D., Iliev, D., Klein-Heßling, W., Nowack, H., Reinke, N., Sonnenkalb, M., and Spengler, C. et al.. (2021). COCOSYS 3.1 user manual. GRS-P-3/Vol. 1, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln.

3. Bratfisch, C., Hoffmann, M., Hoffrichter, J., Jankowski, T., Krist, F., Peschel, J., Stahlberg, G., and Koch, M.K. (2021). Externe Validierung und Modellanalyse der Codesysteme AC2 und ASTEC mit unterstützenden CFD-Detailanalysen (VAMOCAAD). Abschlussbericht zum Forschungsvorhaben BMWi 1501568. PSS-TR-19, Ruhr-Universität Bochum, AG Plant Simulation and Safety.

4. Brähler, T. (2014). Weiterentwicklung der Wasserstoffverbrennungsmodellierung des Lumped-Parameter-Codes COCOSYS, Dissertation/thesis. Ruhr-Universität Bochum, Bochum.

5. Breitung, W., Chan, C., Dorofeev, S., Eder, A., Gelfand, B., Heitsch, M., Klein, R., Malliakos, A., Shepherd, E., Studer, E., et al.. (2000). Flame acceleration and deflagration-to-detonation transition in nuclear safety. State-of-the-Art Report. NEA/CSNI/R(2000)7, Nuclear Energy Agency.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3