Multilateral evaluation of the effects of utilizing thorium oxide in the Bushehr VVER-1000 reactor

Author:

Lotfalian Mohammadreza1,Athari Allaf Mitra1ORCID,Mansouri Masoud1

Affiliation:

1. Department of Nuclear Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran

Abstract

Abstract The use of thorium oxide in thermal reactors is currently being explored due to its promising outcomes. One primary concern is how to reduce the pollution of core components and nuclear waste. The inclusion of 232Th in the reactor leads to the production of 233U and decreases the formation of minor actinides. On the other hand, 238U increases the production of 239Pu, a toxic and strategically significant isotope, along with minor actinides. Therefore, the potential of thorium to reduce the production of 239Pu, one of the most harmful isotopes, can be assessed in the Bushehr VVER-1000 reactor. This study involved replacing some uranium in the Bushehr VVER-1000 reactor with 232Th. The research focused on examining the environmental impact of nuclear waste, including activity, chain reactions, and isotope levels, over a two-year period. The impact of the new fuel substitution was evaluated in the Bushehr reactor, which has a power of 3,000 MWth, in three scenarios: thorium addition to 1.6 % enriched assemblies, thorium addition to 2.4 % enriched assemblies, and thorium addition to 3.6 % enriched assemblies. These changes were analyzed in terms of nuclear waste contamination, plutonium production, fuel burn-up, and conversion ratio, and compared to the reactor using UO2 fuel. The simulation was conducted using the MCNPX 2.6.0 computational code and heterogeneous geometry. The results indicate that nuclear waste pollution decreased when thorium was added to the 1.6 % and 2.4 % enriched assemblies, but increased when added to the 3.6 % assemblies. Additionally, fuel burn-up increased with the addition of thorium in the 1.6 % and 2.4 % assemblies, but decreased in the 3.6 % assemblies. However, the conversion ratio increased in all cases. The fuel temperature coefficient (FTC), moderator temperature coefficient (MTC), and void coefficient (VC) were calculated and evaluated.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3