Design and optimization of molten salt reactor monitoring system based on digital twin technology

Author:

Liu Wenqian12,Han Lifeng1,Huang Li1

Affiliation:

1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai , China

2. University of Chinese Academy of Sciences , Beijing , China

Abstract

Abstract The nuclear power industry is developing rapidly toward intelligence and scale, the digital twin was combined with the industrial interconnection technology to solve the key problems in the application of the digital twin, such as the three-dimensional model presentation, real-time data docking, and the improvement of intelligence degree. Based on the example of Thorium Molten Salt Reactor-Solid Fuel (TMSR-SF0). Firstly, the three-dimensional twin of nuclear power equipment is constructed and the real-time update of twin data is realized based on the Node-EPICS event driver and Websocket communication protocol; Then, the communication interface with MySQL database is developed to realize the storage and management of data; Finally, the PID control system of molten salt circuit pipeline is integrated with back propagation neural network algorithm, and the efficiency and precision of temperature control system are improved by self-modification of weight. The results show that this system has the functions of three-dimensional display, network communication, data storage, and parameter optimization, and the data update cycle is raised to 100 ms, which can provide a certain reference value for the digital transformation of the nuclear monitoring field.

Funder

the Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Reference16 articles.

1. Bu, Q., Cai, J., Liu, Y., Cao, M., Dong, L., Ruan, R., and Mao, H. (2021). The effect of fuzzy PID temperature control on thermal behavior analysis and kinetics study of biomass microwave pyrolysis. J. Anal. Appl. Pyrol. 158: 105176, https://doi.org/10.1016/j.jaap.2021.105176.

2. Cai, X., Dai, Z., and Xu, H. (2016). Thorium molten salt reactor nuclear energy system. Physics 45: 578–590, https://doi.org/10.7693/wl20160904.

3. Hosseini, S.A., Shirani, A.S., Lotfi, M., and Menhaj, M.B. (2020). Design and application of supervisory control based on neural network PID controllers for pressurizer system. Prog. Nucl. Energy 130: 103570, https://doi.org/10.1016/j.pnucene.2020.103570.

4. Hu, M., Kong, F., Yu, D., and Yang, J. (2021). Key technology and prospects of digital twin in field of advanced nuclear energy. Power Syst. Technol. 45: 2514–2522, https://doi.org/10.13335/j.1000-3673.pst.2021.0335.

5. Jiang, M., Xu, H., and Dai, Z. (2012). Advanced fission energy program-TMSR nuclear energy system. Bull. Chin. Acad. Sci. 27: 366–374, https://doi.org/10.3969/j.issn.1000-3045.2012.03.016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3