Effective physical protection system design and implementation at a radiological facility: an integrated and risk management approach

Author:

Ansah Michael Nii Sanka1ORCID,Stepanov Boris Pavlovich1,Amoah Paul Attah1,Agyekum Ephraim Bonah2

Affiliation:

1. National Research Tomsk Polytechnic University , Lenin str., 30 , 634050 , Tomsk , Russia

2. Department of Nuclear and Renewable Energy , Ural Federal University Named After the First President of Russia Boris , 19 Mira Street , 620002 , Ekaterinburg , Russia

Abstract

Abstract Lives are threatened whenever there is an act of theft or destruction against a nuclear and radiological facility thus, physical protection systems are effectively employed to prevent or mitigate loss of valuable assets. Health facilities that provide radiotherapy services have in their facility a temporary storage unit where disused radioactive sources 60Co, 137Cs and 192Ir are kept and this raises concerns for effective physical protection. An integrated physical protection System was considered to consolidate of all sub systems, sensors and elements related to protection system for an effectively secured environment at a radiological facility. Sequence adversary diagram (ASD) was developed to depict the paths that enemies can take to achieve sabotage or stealing objectives and analyze flews in the paths. The approach to this security system effectiveness focuses on using probabilistic statistical methods for risk evaluation considering detection, delays and response. This paper considers the basic and effective elements required for physical protection system for a radiological center and makes risk evaluation as an approach of security system effectiveness which can serve as fundamental guiding principle for decision makers in the establishment of an effective physical protection for a radiological center.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3