Evaluation of human factor engineering influence in nuclear safety using probabilistic safety assessment techniques

Author:

Farcasiu M.1,Constantinescu C.1

Affiliation:

1. Institute for Nuclear Research Pitesti Romania Pitesti Romania

Abstract

Abstract This paper provides the empirical basis to support predictions of the Human Factor Engineering (HFE) influences in Human Reliability Analysis (HRA). A few methods were analyzed to identify HFE concepts in approaches of Performance Shaping Factors (PSFs): Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR) and Cognitive Reliability and Error Analysis Method (CREAM), Success Likelihood Index Method (SLIM) Plant Analysis Risk – Human Reliability Analysis (SPAR-H), A Technique for Human Error Rate Prediction (ATHEANA) and Man-Machine-Organization System Analysis (MMOSA). Also, in order to identify other necessary PSFs in HFE, an additional investigation process of human performance (HPIP) in event occurrences was used. Thus, the human error probability could be reduced and its evaluating can give out the information for error detection and recovery. The HFE analysis model developed using BHEP values (maximum and pessimistic) is based on the simplifying assumption that all specific circumstances of HFE characteristics are equal in importance and have the same value of influence on human performance. This model is incorporated into the PSA through the HRA methodology. Finally, a clarification of the relationships between task analysis and the HFE is performed, ie between potential human errors and design requirements.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Reference19 articles.

1. Swain, A. D.; Guttman, H. E.: Handbook of Human Reliability Analysis With Emphasis on Nuclear Power Plant Applications. NUREG/CR-1278,Washington DC: U.S. Nuclear Regulatory Commission (1983)

2. IAEA: Human Factors Engineering in the Design of Nuclear Power Plants. Vienna, IAEA Safety Standards No. SSG-51 (2019)

3. FAA: FAASystem Safety Handbook. Federal Aviation Administration (2000)

4. IAEA: Safety of Nuclear Power Plants: Design. Vienna, IAEA Safety Standards Series No. SSR –2/1 (2016)

5. Stefanescu, P.: The Organizational and Human Factor in Nuclear Safety. Note de curs, UPB, Facultatea de Energetica. 2000 (in Romanian)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3