Heat transfer enhancement of heat exchanger using rectangular channel with cavities

Author:

Malwe Prateek D.12,Mukayanamath Aarti1,Panchal Hitesh3ORCID,Gupta Naveen Kumar4,Prakash Chander5,Abdul Zahra Musaddak Maher67

Affiliation:

1. Department of Mechanical Engineering , Walchand College of Engineering Sangli, Shivaji University , Kolhapur Maharashtra , 416415 , India

2. Department of Mechanical Engineering , Dr. D. Y. Patil Institute of Technology, Pimpri , Pune, S.P.P.U. , Maharashtra , 411018 , India

3. Department of Mechanical Engineering , Government College of Engineering , Patan , Gujrat , 384265 , India

4. Department of Mechanical Engineering , GLA University , Mathura , India

5. Lovely Professional University , Punjab , India

6. Computer Techniques Engineering Department , Al-Mustaqbal University College , Hillah 51001 , Iraq

7. Electrical Engineering Department , College of Engineering, University of Babylon , Hillah , Babil , Iraq

Abstract

Abstract Heat transfer enhancement is required for numerous situations, i.e., gas turbines, nuclear power plants, micro and macro scale heat transfer, airfoil cooling, electronic cooling, semiconductors, biomedical and combustion chamber lines, etc. One of the prominent ways of increasing the heat transfer coefficient from the surface of a heat exchanger is by moving the position of the thermal boundary layer to make it either thinner or break the same partially. It requires making use of an increased surface area/fins. Accordingly, the research progressed in heat transfer enhancement by using concavities/dimples of the heat exchanger surfaces to improve the heat transfer coefficient and heat transfer rate. These impregnations are made on the internal flow tubes/surfaces of the heat exchanger surfaces. The present research work aims at the experimental investigation of a heat exchanger to determine the airflow pattern and computation of heat transfer rate on the dimpled surfaces. This research work will be beneficial and applicable to heat transfer enhancement applications like micro heat transfer, where space constraint is considered. The geometries considered for the experiment include flat plates and dimpled surfaces. The parameters like Reynolds number (varied from 20,000 to 50,000), dimple depth to imprint diameter ratio (varied from 0.2 to 0.4), and heater input to the test plates (varied from 75 to 120 W) are considered for the comparisons. The results with dimpled surfaces are compared with the flat plate surfaces having no dimples. The Reynolds and Nusselt numbers rise in direct proportion to the heater input. For pin fin and dimpled plate, the ratio of Nusselt number to area average Nusselt number drops for 75 W and 100 W input. The dimpled plate with a ratio of 0.3 between imprint diameter to dimple depth had the highest ratio of Nusselt number to Nusselt number value for the entire group.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3