Determination of heat flux leading to the onset of flow instability in MTR reactors

Author:

El-Morshedy Salah El-Din12

Affiliation:

1. Reactors Department , Egyptian Atomic Energy Authority , Cairo , Egypt

2. Department of Mechanical Engineering , The American University in Cairo , Cairo , Egypt

Abstract

Abstract The prediction of heat flux leading to the Onset of Flow Instability (OFI) phenomena is an important consideration in the design of Material Testing Reactors (MTR) due to the possibility of flow excursion during postulated accident. From the thermal-hydraulic point of view, OFI is the critical phenomenon limiting MTR reactor power. In a previous work, an empirical correlation is developed to predict the subcooling at OFI in narrow vertical rectangular channels simulating a coolant channel of MTR. In the present work, an innovative model to determine the heat flux leading to OFI in MTR reactors is introduced based on the previous correlation. The developed model gives a very low deviation of only 1.65% from the experimental data of Whittle & Forgan that covers a wide range of MTR operating conditions. The heat flux leading to OFI is also predicted by both Whittle & Forgan and Fabrega correlations for comparison. The present model is then applied on the IAEA 10 MW MTR generic reactor to predict the Best-Estimate (BE) and Best-Estimate-Plus-Uncertainty (BEPU) Onset of Flow Instability Ratio (OFIR) and the power leading to OFI as well as the bubble detachment parameter under different coolant velocities and inlet temperatures. The model is also used to predict both the OFIR and bubble detachment parameter in the reactor under unprotected Loss-of-Flow transient for exponential flow decay with a time constant of 1.0 s (fast LOFA), 10, 15 and 25 s (slow LOFA) from a power level of 10 MW. For BEPU calculation, a combined statistical method with direct propagation of errors is adapted to treat the uncertainty factors for fuel fabrication and measured parameters in the BEPU calculation. The model results is analyzed and discussed.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3