Neutronic and thermal-hydraulic assessment of the TRR with new core designed based on tubular fuels

Author:

Gharari Rahman1,Khoshahval Farrokh1ORCID,Hasanzadeh Mostafa1,Mozaffari M. Amin1,Amirkhani M. Amin1,Esmaili Hasan1

Affiliation:

1. Reactor and Nuclear Safety Research School , Nuclear Science and Technology Research Institute (NSTRI) , Tehran , Iran

Abstract

Abstract Herein, the feasibility study of the Tehran Research Reactor (TRR) with a new core designed based on tubular fuels from the neutronic, thermal-hydraulic, safety, and operational points of are investigated using MCNPX, WIMS, CITATION, Computational Fluid Dynamics (CFD), and RELAP codes. According to the results, the total neutron flux in the new core with tubular fuels is increased by more than 14.3 % compared with the current core of the TRR with plate-type fuels. Moreover, due to the higher fuel amount in the tubular compared with plate-type fuels (about 17 % in similar conditions), its effective multiplication factor is much higher than the TRR with plate-type fuels. Moreover, the results show that the maximum cladding temperature is sufficiently lower than 105 °C and the produced heat in the tubular fuel are removed without changing the current flow rate of the core. Furthermore, the maximum fuel temperature in tubular fuel is about 10 °C lower than the maximum fuel temperature in the current standard fuel element.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3