Euler–Maruyama algorithm in estimating UGV path and location in nuclear emergency and security applications

Author:

Zaky Hany Nasry1,Abd Elfatah Mohamed G.1,El-Mongy Sayed A.2,Abdel-Rahman Mohamed A.E.3

Affiliation:

1. Mathematics Department , Military Technical College , Cairo , Egypt

2. Nuclear and Radiological Regularity Authority (ENRRA) , Nasr City , Egypt

3. Nuclear Engineering Department , Military Technical College , Cairo , Egypt

Abstract

Abstract Mobile Robots (MR) are currently used across a variety of different sectors and have military, nuclear and industrial applications among others. In unmanned systems, teleoperation sensors, navigation instruments, control systems and radiation sensors can be fixed on the MR to perform required tasks such as radiological scanning, identifying, and surveying the contaminated environment that has been exposed to radiation. In this work, an estimation of the mobile robot location and the optimum path for time-delay compensation for MR teleoperation are investigated. As the MR teleoperation has a stochastic nature, the kinematics equations are modeled using stochastic differential equations (SDEs). Afterwards, these SDEs are solved using Numerical algorithms such as Euler–Maruyama algorithm which is used to approximate SDEs solution with the aid of MATLAB. Additionally, the results are discussed and depicted in tables and figures. Finally, the simulated results for the solution are performed and are found to highly agree with the ideal path of the simulated MR. This result is of great importance to be used in the case of nuclear emergency response and mitigation.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Famous Digital Signatures Used In Smart Contracts;2023 International Telecommunications Conference (ITC-Egypt);2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3