A review on optimal UPFC device placement in electric power systems

Author:

Ammar Yasser M.1,Elbaset Adel A.23,Adail Ahmed S.4,Araby Sayed E.L.5,Saleh Alaa A.1

Affiliation:

1. Egypt Second Research Reactor (ETRR-2), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt

2. Electrical Engineering Department , Faculty of Engineering, Minia University , El-Minia , Egypt

3. Department of Electro Mechanics Engineering , Faculty of Engineering, Heliopolis University , Cairo , Egypt

4. Hot Lab Center, Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt

5. Reactors Department , Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt

Abstract

Abstract UPFC device is discussed in this paper along with their models and functions. Moreover, the suggested and the complementally approaches in the current research study. As a result, the methods are divided into three divisions, which are sensitivity analysis based methods, conventional optimization based methods and artificial intelligence (AI) based methods. In addition, artificial intelligence based methods plays a major role in reducing the search space region. However, to optimize the resulting benefits, the placement, sizing and parameter of UPFC device should be determined. This paper presents and discusses in depth an overall review of the last two decades’ studies, including proposed and comparative methods and strategies, approaches, objective functions, UPFC device tools utilized, limitations, contingency situations and all parameters evaluated and simulated. This paper also provides an analysis of UPFC’s various benefits and uses of power flow studies, such as, power loss mitigation, system load ability improvement, power system security, enhancement of voltage stability, cost of generation and UPFC installation and utilizing specific optimization techniques. Therefore, a more weighted overview of the proposed method is presented focused on artificial intelligence optimization methods.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3