Study on the accidents analyses of a single channel for XADS by using MPC-LBE code

Author:

Zhang Ling1,Song Tianxin1,Gu Zhixing1,Dai Jianing1,Ou Wenlan1,Pan Qiwen1,Gong Zhengyu1

Affiliation:

1. College of Nuclear Technology and Automation Engineering, Chengdu University of Technology , Chengdu 610059 , China

Abstract

Abstract Accelerator Driven sub-critical System (ADS), which employs the high-energy proton beam generated by accelerator to bombard the target nucleus and generate spallation neutrons as external neutrons to drive and maintain the operation of its sub-critical reactor, is of great significance in nuclear waste treatment and disposal. As the instability of proton beam would affect the power level of the reactor and threaten the safety of ADS, Beam Trip (BT) and Beam OverPower (BOP) are commonly considered to be its two typical transient accidents. As for the sub-critical reactor, the Transient OverPower (TOP) is also one of typical transient accidents that should be considered, which is mainly caused by reactivity insertion under certain cases, such as SGTR (Steam Generator Tube Rupture) accident. For the subcritical reactors, the transient evolution behaviors are strongly affected by the subcriticality value. On the one hand, the subcriticality values of ADS design should take safety margin and power gain into consideration. On the other hand, the subcriticality value is variable with the burnup of reactors. So it is necessary to study the safety characteristics of the subcritical reactors under different subcriticality values, in this paper, the transient safety characteristics of a single channel for XADS under BT, BOP and TOP accidents of different subcriticality values were investigated by using MPC-LBE code.

Funder

Natural Science Foundation of Sichuan Province

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3