Affiliation:
1. Department of Chemistry , N.M. Institute of Science, Bhavan’s College , Munshi Nagar, Andheri (West) , Mumbai , 400058 , India
Abstract
Abstract
The thermodynamics and kinetics of bromide ion-isotopic exchange reactions performed by using fresh and UV radiation degraded industrial grade anion exchange resin Duolite A-638 resins were studied by application of radio analytical tracer technique. The reaction rate k in min−1 for the fresh resin decreases sharply with decrease in wavelength of UV radiations. Thus for 0.200 M labeled bromide ion solution maintained at a constant temperature of 30.0 °C, the k value for fresh resin (0.367 min−1), decreases to 0.335 min−1 for λ384 UV radiation degraded resin, which further decreases to 0.273 min−1 for λ284 UV radiation degraded resin. Under identical experimental conditions, the thermodynamic parameters like energy of activation (−1.65 kJ/mol), enthalpy of activation (−4.24 kJ/mol), free energy of activation (64.85 kJ/mol), and entropy of activation (−0.229 kJ/K/mol) calculated for the fresh resin increases to −1.61 kJ/mol, −4.19 kJ/mol, 64.92 kJ/mol, and −0.228 kJ/K/mol respectively for λ384 UV radiation degraded resin; which further increases to −1.60 kJ/mol, −4.18 kJ/mol, 65.17 kJ/mol, and −0.228 kJ/K/mol respectively for λ284 UV radiation degraded resin. Increase in thermodynamic parameters calculated here for the fresh and degraded resins suggests that decrease in wavelength of UV radiations has catastrophic effect on the resin making the bromide ion-isotopic exchange reactions thermodynamically less feasible. The impact of UV radiation on resin degradation was supported by their characterization study using Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques.
Subject
Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation
Reference28 articles.
1. Bottino, F.A., Cinquegrani, A.R., Pasquale, G., Di, L.L., and Pollicino, A. (2003). Chemical modification, mechanical properties and surface photooxidation of films of polystyrene. Polym. Test. 12: 405–411, https://doi.org/10.1016/j.polymertesting.2003.10.001.
2. Gijsman, P. and Diepens, M. (2009). Photolysis and photooxidation in engineering plastics. In: Celina, M.C., Billingham, N.C., and Wiggins, J.S. (Eds.), Polymer degradation and performance, ACS Symposium Series 1004. American Chemical Society, Washington, pp. 287–306.
3. Goldshtein, J. and Margel, S. (2011). Synthesis and characterization of polystyrene/2(5-chloro-2H-benzotriazole-2-yl)-6-(1, 1-dimethylethyl)-4-methyl-phenol composite microspheres of narrow size distribution for UV irradiation protection. Colloid Polym. Sci. 289: 1863–1874, https://doi.org/10.1007/s00396-011-2505-x.
4. IAEA – International Atomic Energy Agency (1984). Treatment of low and intermediate level liquid radioactive wastes. Technical Reports Series No. 236, IAEA, Vienna.
5. IAEA – International Atomic Energy Agency (1994). Advances in technologies for the treatment of low and intermediate level radioactive liquid wastes. Technical Reports Series No. 370, IAEA, Vienna.