pVT Measurements and Related Studies on the Binary System nC16H34 -nC17H36 and on nC18H38 at High Pressures

Author:

Würflinger Albert1,Mondieig Denise2,Rajabalee Fazil2,Cuevas-Diarte Miquel Angel3

Affiliation:

1. 1Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany

2. 2Centre de Physique Moleculaire Optique et Hertzienne, UMR 5798 au CNRS, Universite Bordeaux I, 351 Cours de la Liberation, F-33405 Talence Cedex, France

3. 3Departament de Cristallografia, Mineralogia i Dipösits Minerals, Facultat de Geologia, Universität de Barcelona, c/Marti i Franques, E-08028 Barcelona, Spain

Abstract

Abstract The phase diagram of the binary system nC16H34 -nC17H36 has been established at ambient pressure using DSC and crystallographic measurements. At low temperatures below the rotator phase RI there exist two crystal forms Op (about x(C17) = 0.25) and Mdci (about x(C17) = 0.67) which are different from the crystal structures of the pure compounds (Tp for C16 and Oi for C17). Furthermore two compositions: (a) C16/C17 = 3:1 and (b) = 1:2, which correspond to the coexistence range of Op and Mdci, were chosen for high pressure DTA and pVT measurements, yielding the following findings: The specific volume of the rotator phase of C17 is distinctly lower than those of the binary systems at the same state point. Assuming the existence of a metastable rotator phase for C16, an excess volume of Δ VE/V ≈ 0.01 can be estimated. Due to the very enlarged coexistence range of RI, the mixtures reach their lower transition point at considerably lower temperatures (in isobaric measurements) or higher pressures (in isothermal measurements), where the specific volume is lower than that of C17 at its transition point. Furthermore, the volume and enthalpy changes of the Φord -RI transition is distinctly smaller for the binary systems than for pure C17. Thus the specific volumes of the phases Op and Mdci are appreciably larger than ν(spec.) of C17. Op and Mdci have practically the same specific volume in accordance with the crystallographic results. Enthalpy values are obtained with the aid of the Clausius-Clapeyron equation which agree well with enthalpies derived from the DSC measurements. Furthermore, pVT data have been established for the liquid and solid phases of nC18H38 in the neighbourhood of the melting curve, allowing to determine volume and enthalpy changes of melting as a function of pressure.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3