Embedded system design for classification of COPD and pneumonia patients by lung sound analysis

Author:

Hassan Naqvi Syed Zohaib1ORCID,Choudhry Mohmmad Ahmad2ORCID

Affiliation:

1. Department of Electronics Engineering , University of Engineering and Technology Taxila , Taxila , Pakistan

2. Department of Electrical Engineering , University of Engineering and Technology Taxila , Taxila , Pakistan

Abstract

Abstract Chronic obstructive pulmonary disease (COPD) and pneumonia are lethal pulmonary illnesses with equivocal nature of abnormal pulmonic acoustics. Using lung sound signals, the classification of pulmonary abnormalities is a difficult task. A standalone system was conceived for screening COPD and Pneumonia patients through signal processing and machine learning methodologies. The proposed system will assist practitioners and pulmonologists in the accurate classification of disease. In this research work, ICBHI’s and self-collected lung sound (LS) databases are used to investigate COPD and pneumonia patient. In this scheme, empirical mode decomposition (EMD), discrete wavelet transform (DWT), and analysis of variance (ANOVA) techniques are employed for segmentation, noise elimination, and feature selection, respectively. To overcome the inherent limitation of ICBHI’s LS database, the adaptive synthetic (ADASYN) sampling technique is used to eradicate class imbalance. Lung sound features are used to train fine Gaussian support vector machine (FG-SVM) for classification of COPD, pneumonia, and heathy healthy subjects. This machine learning scheme is implemented on low cost and portable Raspberry pi 3 model B+ (Cortex-A53 (ARMv8) 64-bit SoC @ 1.4 GHz through hardware-supported language. Resultant hardware is capable of screening COPD and pneumonia patients accurately and assist health professionals.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Based Metamaterial Design;ACS Applied Materials & Interfaces;2024-05-29

2. A low power respiratory sound diagnosis processing unit based on LSTM for wearable health monitoring;Biomedical Engineering / Biomedizinische Technik;2023-04-21

3. iBMSR: Intelligent Body Mass Status Recognition from Respiratory Auscultation;2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS);2023-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3