Effective deep learning classification for kidney stone using axial computed tomography (CT) images

Author:

Sabuncu Özlem1ORCID,Bilgehan Bülent1ORCID,Kneebone Enver2,Mirzaei Omid3

Affiliation:

1. Department of Electrical and Electronic Engineering , Near East University, Nicosia , Mersin , Türkiye

2. Vocational School of Health Services , European University of Lefke, Lefke , Mersin , Türkiye

3. Department of Biomedical Engineering , Near East University, Nicosia , Mersin , Türkiye

Abstract

Abstract Introduction Stone formation in the kidneys is a common disease, and the high rate of recurrence and morbidity of the disease worries all patients with kidney stones. There are many imaging options for diagnosing and managing kidney stone disease, and CT imaging is the preferred method. Objectives Radiologists need to manually analyse large numbers of CT slices to diagnose kidney stones, and this process is laborious and time-consuming. This study used deep automated learning (DL) algorithms to analyse kidney stones. The primary purpose of this study is to classify kidney stones accurately from CT scans using deep learning algorithms. Methods The Inception-V3 model was selected as a reference in this study. Pre-trained with other CNN architectures were applied to a recorded dataset of abdominal CT scans of patients with kidney stones labelled by a radiologist. The minibatch size has been modified to 7, and the initial learning rate was 0.0085. Results The performance of the eight models has been analysed with 8209 CT images recorded at the hospital for the first time. The training and test phases were processed with limited authentic recorded CT images. The outcome result of the test shows that the Inception-V3 model has a test accuracy of 98.52 % using CT images in detecting kidney stones. Conclusions The observation is that the Inception-V3 model is successful in detecting kidney stones of small size. The performance of the Inception-V3 Model is at a high level and can be used for clinical applications. The research helps the radiologist identify kidney stones with less computational cost and disregards the need for many experts for such applications.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3