The effects of heating rate and sintering time on the biaxial flexural strength of monolithic zirconia ceramics

Author:

Oyar Perihan1ORCID,Durkan Rukiye2ORCID

Affiliation:

1. Dental Prosthetics Technology , Vocational School of Health Services, Hacettepe University , Ankara , Türkiye

2. Department of Prosthodontics , Faculty of Dentistry, Istanbul Okan University , Istanbul , Türkiye

Abstract

Abstract The strength of zirconia ceramic materials used in restorations is dependent upon sintering. Varying sintering protocols may affect the biaxial flexural strength of zirconia materials. This in vitro study was conducted to investigate the effects of sintering parameters on the biaxial flexural strength of monolithic zirconia. Two different monoblock zirconia ceramics were used. Following coloration, samples of both types of ceramics were divided into groups according to whether or not biaxial flexural strength testing was performed directly after sintering or following thermocycling. Biaxial flexural strength data was analysed with a Shapiro Wilk normality test, followed by 1-way ANOVA, Tukey post hoc tests for inter-group comparisons, and paired samples t-tests for intra-group comparisons. A significant difference was found between the biaxial flexural strengths of Zircon X and Upcera ceramics before thermocycling (p<0.05). In both Zircon X and Upcera ceramic groups, the thermocycling process created a significant difference in the biaxial flexural strength values of the ceramic samples in Group 6 (p<0.05) which had the slowest heating rate and longest holding time. The zirconia ceramics have higher BFS at higher heating rates either before or after thermocycling. The holding time has significant effects on thermocycling and flexural strength. The zirconia achieved its optimum strength when it sintered at longer time regardless of heating rates.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3