Author:
Zhang Li-Qiu,Shen Hong-Xia,Cheng Qiong,Liu Li-Chun
Abstract
AbstractA method for using a hyperbranched polymer (HBP) as a bridge to link multiple secondary antibodies at HBP branches to amplify the detection response signal on a quartz crystal microbalance (QCM)-based sandwich-type immunosensor is reported. Carboxyl groups were prepared at multiple branches of HBP to make possible chemical binding between HBP and secondary antibodies via the carboxyl–amine reaction. The total mass ovcry antibodies were used to enhance the signal on a QCM chip in comparison with a simple sandwich-type immune reaction. By contrast, the proposed method could cause one antigen to analogously react with multiple secondary antibodies as a result of the branch structure of HBP. The strategy of using HBP as a bridge to link multiple secondary antibodies succeeded in quantitatively detecting the hepatitis B surface antigen (HBsAg). By employing demonstrated HBP bridge-linking, the frequency shift on a QCM chip was approximately 5 times greater than conventional methods without modification at secondary antibodies. The limit of detection of HBsAg was achieved as 2.0 ng mL
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献