Learning for infinitely divisible GARCH models in option pricing

Author:

Zhu Fumin1,Bianchi Michele Leonardo2,Kim Young Shin3,Fabozzi Frank J.4,Wu Hengyu5

Affiliation:

1. College of Economics, Center for Finance & Accounting Research , Shenzhen University , Shenzhen , Guangdong , China

2. Regulation and Macroprudential Analysis Directorate , Bank of Italy , Rome , Italy

3. College of Business , Stony Brook University , Stony Brook , NY , USA

4. EDHEC Business School , Nice , France

5. Management School , Jinan University , Guangzhou , Guangdong , China

Abstract

Abstract This paper studies the option valuation problem of non-Gaussian and asymmetric GARCH models from a state-space structure perspective. Assuming innovations following an infinitely divisible distribution, we apply different estimation methods including filtering and learning approaches. We then investigate the performance in pricing S&P 500 index short-term options after obtaining a proper change of measure. We find that the sequential Bayesian learning approach (SBLA) significantly and robustly decreases the option pricing errors. Our theoretical and empirical findings also suggest that, when stock returns are non-Gaussian distributed, their innovations under the risk-neutral measure may present more non-normality, exhibit higher volatility, and have a stronger leverage effect than under the physical measure.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Economics and Econometrics,Social Sciences (miscellaneous),Analysis,Economics and Econometrics,Social Sciences (miscellaneous),Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3