Affiliation:
1. School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, China
2. School of Chemical Engineering, Northwest University, Xi’an, Shaanxi 710069, China
Abstract
AbstractThe adsorption of l-α-glycerophosphocholine (GPC) by cation-exchange resin 001 × 7 was studied in a batch system. The adsorbent dosage, shaking speed, and adsorption temperature were investigated. An adsorption efficiency of more than 99.4% was obtained under optimal conditions. The kinetic data evaluated by the pseudo-second-order kinetic model fitted the experimental data better than those evaluated by the pseudo-first-order model. The rate constant k2 increased when the temperature increased, indicating the adsorption was endothermic in nature. The Langmuir and Freundlich isotherm models were used to analyze the adsorption equilibrium data, and it was found that the experimental data well fitted the Langmuir isotherm model. The thermodynamic parameters, enthalpy change (ΔG0), free energy change (ΔH0), and entropy change (ΔS0), were calculated. The value of ΔG0 was found to be in the range of −5.09 to −14.20 kJ mol−1, indicating that the adsorption was spontaneous and basically physisorption, and the positive values of ΔH0 and ΔS0 exhibited that the adsorption was endothermic and the randomness of the system increased during the adsorption.
Subject
Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献